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Variations of Method-of-Moments Matrices
Arising in the Analysis of Planar
Microstrip Structures
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Abstract—T hispaper presentsanew impedance matrix inter po-
lation algorithm, in the context of method of moments, for planar
microstrip structures. Three different interpolating functions are
implemented depending upon the distance between the basis and
testing functions. To demonstr ateitsefficiency, thetechniqueisap-
plied to several planar microstrip structures, viz. a patch antenna
fed by microstrip lineand a4 x 4 planar patch array. It isdemon-
strated that the use of the proposed impedance matrix interpola-
tion scheme can result in significant savings in the computation
timewith little or no compromisein the accuracy of the solution.

Index Terms—Impedance matrix interpolation, method of
moments (MoM), microstrip patch antenna, probe-fed square
patch array.

|. INTRODUCTION

IELD solvers based on the method of moments (MoM) are
often used for the analysis and design of a wide variety
of antennas and arrays since it reduces the problem domain to
regions where the surface current densities are defined, thereby
reducing the number of unknowns significantly when compared
to the finite methods [ 1]{4]. Even s, as the problem geometry
becomes large, the computation of the MoM impedance ma-
trix elements consumes a considerable portion of the total solu-
tion time because this computation requires O(N?) operations,
where IV is the number of unknowns, and must be repeated at
each frequency. Thus, it is desirable to devise ways by which
the computation time for impedance matrix can be shortened,
without, of course, sacrificing the accuracy of the solution.
One promising approach to speeding up the time for matrix
generation is the impedance matrix interpolation. The concept
of the impedance matrix interpolation was first proposed by
Newman and Forrai [5] and Newman [6] for the scattering
analysis of a microstrip patch and the computation of the
impedance of a straight dipole antenna and a flat square plate.
Virga and Rahmat-Samii have aso applied this technique
to evaluate the performance of complex antenna structures
designed for personal communications applications [7], [8].
In a follow-up paper, Barlevy and Rahmat-Samii [9], [10]
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have modified the interpolating function used in [7] and [8]
and have applied the new version to predict the response of
frequency selective surfaces (FSSs). However, in these papers,
the interpolation scheme has been employed only for structures
in free space, e.g., freestanding FSSs or antennas, and the
performance of this scheme when applied to planar microstrip
structures has never been examined.

In this paper, we present a new matrix interpolation scheme
and demonstrate its efficacy by analyzing avariety of planar mi-
crostrip structures. In this scheme, we begin by computing and
storing theimpedance matrix el ements at three sel ected frequen-
cies, and then generate them at intermediate frequencies within
the band viainterpolation. The present interpol ation scheme dif-
fersfrom those employed previously in arather significant way
because it uses “different” interpolating functions in three dif-
ferent regions, viz. near, intermediate, and far, defined on the
basis of the distance between the source and testing functions.
To validate thetechnique, and to illustrate its versatility, the pro-
posed interpolation technique is applied to some typical planar
microstrip structures, viz. a microstrip line-fed antenna and a
4 x 4 planar patch array.

II. NEw IMPEDANCE MATRIX INTERPOLATION ALGORITHM

In this section, we summarize the MoM formulation used in
this paper and the new impedance matrix interpolation scheme.
We begin our discussion by describing the formulation of the
MoM for microstrip structures with a single-layer substrate,
whichisan electric field integral equation (EFIE), and consider
that the substrate and ground plane are transversely unbounded
with respect to the z-axis [4]. Let us assume that an incident
field, generated by agiven source, impinges upon the surface of
aconducting structure and induces a current distribution .Js(r),
which we are trying to solve for by imposing the boundary
condition

E(7) = Z5J5(7’), res (€N}
where S is the conducting surface, E(r) is the total tangential
field onthe surface, and Z isthe surfaceimpedance of the con-
ductor. From the boundary condition associated with thetangen-
tial electric field in the surface of the conductor

Ez(7) + Es(T) = Z5J5(7’) (2)
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where E;(r) istheincident field on the conducting surface, Z¢
isthe surfaceimpedance of the conductor, and Es(r) isthe scat-
tered field, which can be expressed by an el ectric scalar potential
V" and a magnetic vector potential A as

Es(r) = —jwA - VV )

where w is the angular frequency.
Substituting (3) into (2), we obtain the desired mixed poten-
tial integral equation (MPIE)

Ei(p) ijLds’G:A(plp’)-Js(p’)
v / ds' Gy (ol )as(#) + ZsJs(p)  (4)
S
where
Vip) = /S a5/ G (plpYas (o) (5)

Alp) = /S a5 Ta(ole') - Is(0') (©)

G4 and Gy are the Green's functions of the magnetic vector
potential and electric scalar potentia for microstrip structures,
respectively, p = 2z + vy is the projection of » on the (z, y)
plane, and ¢s isacharge density, which isrelated to the current
density through the continuity eguation

V-Js—i—j(u(]s =0. (7)

Next, we assume that the current distribution is represented
by a set of rooftop basis functions as

Js=> LT, n=12...,N (8)
and the charge density as
7(0(]522_[”]1”, 71:1,2,,N (9)

where the  and ¥ components of the current distribution can be
expressed separately as

Jsz :Aiy > LonTon

JSy :é zn: IynTyn (10)
_{ —%, [x[<Axand[y[<%
0, elsewhere
{1_M o > 57 and Jy] < Ay
Tyn = Ay7 2 - - (11)
0, elsewhere

Az and Ay are x and y-directed current cell size, respectively,
and the functions [[, = —V - T,, correspond to the pulse
doublets.

By applying the Galerkin procedure, we obtain an N x N
matrix equation, which leads

[Zin] 1] = [Vin] (12)

where [Z,,,,] isthe N x N impedance matrix, [,,] isthe N x 1
current distribution coefficient matrix to be determined, [V;,,]
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isthe NV x 1 voltage or excitation matrix, and the elements of
the impedance matrix are expressed by the contribution of the
magnetic vector potential, electric scalar potential, and ohmic
losses [4] as

Zmn =0mn + Umn + lrn,n (13)
=i [ AsTp)e [ Gl L) (14
Sm Sn

1
Umn =—— / dslL, (p) / ds'Gv (ple' )L, (p')
JW Jsm Sn

lnn =Zs | dsTin(p) - Tn(p').
Sm

(15)

(16)

Equation (12) is solved for the current coefficients by using
either a direct or an iterative method, and other quantities of
interest, e.g., the S-parameters and radiation pattern, are subse-
quently derived from the knowledge of this distribution. In this
paper, we concentrate on the matrix generation problem as we
sweep the frequency, and describe the proposed approach in the
following paragraph.

It isawell-known fact that most parameters of interest, such
astheinduced current distribution and input impedance, exhibit
rapid frequency variations caused by resonance characteristics
of the circuit. However, the impedance matrix elements are rel-
atively smooth in their behaviors, and it is a better strategy to
interpol ate them, as has been suggested in some previous papers
[6], rather than attempt to do the same with the final solution.

To understand the behavior of theimpedance matrix elements
for microstrip structures as functions of the frequency, let us
consider (14)—(16). In our formulation, the impedance matrix
elements of the MoM can be separated into three terms in ac-
cordance with their contributions to the matrix elements. The
first of these corresponds to the contribution of the magnetic
vector potential A and is related to a magnetic vector Green's
function G4. The second one is from the contribution of the
electric scalar potential V' and is related to the electric scalar
Green's function Gy-. Finaly, the third one is the contribution
of the ohmic losses. We note that the frequency variations of the
impedance matrix elementsareintimately related to those of the
above Green’s functions, and we take advantage of this fact to
postul ate the frequency behaviors of the matrix elements. Note
that there is a jw factor contained in the first term, and a1/jw
factor in the second term, and these behaviorsarereflectedinthe
matrix elements aswell. The behaviors of the Green’ sfunctions
for a microstrip structure have been investigated by many re-
searchers[11]-{13]. It turns out that the magnitude of the vector
Green' s function changes little with frequency, while the corre-
sponding variation of the scalar Green’ sfunction depends on the
distance. In the near region, the scalar Green’s function varies
little with frequency, while its magnitude is proportional to f2
for the intermediate region, where f is the frequency; also, in
the far region, it is proportional to . Hence, we need to use
different interpolating functions depending on the distance be-
tween the source and testing functions. In the intermediate and
far regions, the phase varies rapidly as a function of frequency
and needs to be factored out before we begin the interpolation
process.
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Fig. 1. Geometry of apatch antennafed by amicrostrip line.

When dealing with the free-space Green’ s function, asin the
algorithms in [5]-{10], the normalized distance kqr is used to
describe its behavior, where kg and r are the propagation con-
stant and the distance between the source and testing functions
in free space, respectively. However, when working with mi-
crostrip-type structures, we need to replace ko7 with k. p, where
k. isthe effective wavenumber of the microstrip structure, and
p istheradial distance in the x—y-plane. Previous workers have
used the distance criterion of 0.5\ for free-space structures
to factor out the phase term, where A is the free-space wave-
length, because the phase variation is less than 180° (kor < 7)
when the distanceislessthan 0.5)\g. We have carried out exten-
sive numerical experiments with microstrip structures and have
identified the following distance criteria on the basis of these
experiments. pg = 0.45)\. for transitioning from the near to
the intermediate region, where A. is the effective wavelength,
and p; = 0.75X, for moving from the intermediate into the far
region.

A microstrip line-fed patch antenna, shown in Fig. 1, is con-
sidered to illustrate the behavior of the impedance matrix ele-
ments as functions of the frequency. Fig. 2 showstheimpedance
matrix of typical elements of the patch antenna as functions of
the freguency, ranging from 1 to 5 GHz, for three different dis-
tance cases. The current on the antenna is modeled by using
rooftop basis functions and the discretization of the antenna ge-
ometry is performed on auniform rectangular grid. All three el-
ements correspond to those elements for the z-directed rooftop
basis and testing functions. For the near region, where the dis-
tance between the basis and testing functionsis relatively small
(Pmn < 0.45).), Fig. 2 shows that the imaginary part of atyp-
ical impedance matrix element is much larger than thereal part,
which decreases inversely as a function of frequency (f~1),
and its phase variation is very small. For the intermediate re-
gion (0.45A. < pmyn < 0.75).), we observe an increase in the
magnitude of the real parts of the matrix elements, as well as
their phase variations. For the far region (p,,, > 0.75).), the
real parts of the impedance matrix now become comparable to
the imaginary parts and the phase fluctuates as a function of the
frequency.

In the impedance matrix interpolation process, first the ma-
trices at three selected frequencies are directly calculated by
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Fig. 2. Impedance matrix elements of the microstrip line-fed patch antenna

for three different distances. (a) Imaginary part. (b) Real part.

using (13), and the results are stored. These matrices are sub-
sequently used to interpolate the elements at the intermediate
frequencies. Due to the inherent differences in the behaviors of
the matrix elements in the three different regions, viz. near, in-
termediate, and far, we choose different interpolating functions
for the imaginary parts of the elements. However, a quadratic
interpolating function (4 + B f + Cf?) is aways found to be
adequate for the real part over the entire region.

Turning now to the imaginary part, for the near region
(pmn < 0.45).), we interpolate it by using an inverse f
function in f~t, which contains both the linear and inverse
terms, given by

X(f):AE—i-Cf. 17)

f

To demonstrate its effectiveness, we compare the results of
the interpolation using this scheme with two others. We apply
all three schemes to the imaginary part of the matrix element
Z1 1 (self-term) for apatch antennafed by amicrostrip line, the
other two being (A + Bf + Cf?) and (A + BIn(f) + Cf)
functions. A comparison of the interpolation results with the
direct computation are shown in Fig. 3(a), with the impedance



YEO AND MITTRA: ALGORITHM FOR INTERPOLATING FREQUENCY VARIATIONS OF MoM MATRICES

Imaginary part ofimpedance matrix(Z1.1, p=0mmj}, MS-fed-Patch

2000 Jy
-4000

=
-3 e

£ 6000 B

© ﬂiﬁm@ —@—  Direct computation
T 8000 Wy G —+—  A4BA+CE
- —o—  A+BRCF
e - A+BIN(PFCT
s
@
5]
E

14000

15 2 25 3 35 4 4.5 5
Frequency{GHz)
(€Y

Real part of impedance matrix(Z, ., p~Omm), MSfed-Patch

1,1

-
——

Direct computation
A+BRCF

15 2 25 3 35 4 4.5 5
Frequency(GHz)
(b)

Fig. 3. Comparison of the impedance matrix element derived by using
different interpolating functions in the near region (Z1,1, ¢ = 0 mm).
(a) Imaginary part. (b) Real part.

matrices derived at 1, 3, and 5 GHz as the starting points for
theinterpolation (A f = 2 GHz). It isevident that the inverse f
interpolating function, givenin (17), isthe most accurate among
the three and, hence, is the recommended choice. The results
for the real part of the matrix element, for which we use the
universal representation for the entire computational domain,
are shown in Fig. 3(b) for the near region.

Next, in the intermediate region (0.45A. < pmn < 0.75),),
we find that the phase variations increase and dominate the fre-
quency variations of the impedance matrix elements. To cir-
cumvent this problem, we factor out this term and interpolate
only the rest, which is relatively slowly varying, and recover
the original impedance matrix elements later by restoring the
phase factor to the interpolated result. In thisregion, we use the
quadratic function below for both the real and imaginary parts
Of Zpn /e 7kePmn asfollows:

X(fy=A+Bf +Cf2. (18)

Fig. 4(a) and (b) showstheinterpolation results of the element
Z1.22(p = 25 mm) with and without the removal of the phase
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Fig. 4. Comparison of the impedance matrix element derived by using
different interpolating functionsintheintermediateregion (Z; 22, e = 25 mm).
(a) Imaginary part. (b) Real part.

factor for both theimaginary and real parts. It isobviousthat, in
thisregion, the interpol ation works better when the phase factor
is removed.

Finally, for the far region (p,., > 0.75.), the influence of
the phaseterm ¢—7%-~m» becomes more severe and the elements
fluctuate more rapidly as functions of the frequency. Similar to
theintermediate region, the phase term is again factored out and
only the remaining is interpolated. For this region, we use the
cubic function below for theimaginary partsof Z,,,,, /e ~7k<fmr
i.e, we let

X(fy=Af+Bf*+Cf° (19)
while the quadratic function is still used for the real parts of
Znn /e~ *ePmn Fig. 5(a) and (b) showstheinterpolation results
with and without removing the phase factor for both the imag-
inary and real parts. We see that the interpolation also works
better in this region when the phase term is factored out.

To demonstrate the efficacy of the proposed method, we have
compared the current coefficients obtained from our interpola-
tion scheme with two others [7], [8] against the results of the
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Fig. 5. Comparison of impedance matrix element derived by using different
interpolating functionsin the far region (Z1 293, € = 78.2 mm). (a) Imaginary
part. (b) Real part.

direct computation. Three different interpolation schemes in-
cluding the proposed one are implemented from 1 to 5 GHz for
the patch antennaand the error norm for the current coefficients
isdefinedby ¢; = /3, |1 — [deet|2/, 5 |1diveet 2, For
the first case, the proposed interpolation scheme is employed.
For the second case, we employ the inverse f and quadratic
functions for interpolating the imaginary and real parts, respec-
tively, over the entire region. For this case, the distance criterion
for factoring out the phasetermis0.5)... For thelast case, we ex-
periment with the same interpolating function as above, except
for theimposition of thedistancecriterion of 0.5,. Fig. 6 shows
the error norm for the current coefficients for three cases. The
results clearly show that the scheme we have proposed works
better than the other two existing schemes.

I1l. NUMERICAL RESULTS AND COMPARISON

The three-region interpolation scheme, described above, has
been applied to the matrices for several planar microstrip struc-
tures and the results are compared with that of direct compu-
tation to assess their accuracies. The examples chosen are: 1) a
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patch antennafed by amicrostrip lineand 2) a4 x 4 planar patch
array.
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Fig. 8. Comparison of the S11 characteristic for the microstrip line-fed patch.

A. Microstrip Line-Fed Patch Antenna

The first example for the impedance matrix interpolation is
apatch antenna, fed by a microstrip line, as shown in Fig. 1. A
modeling of thisantennaat the highest frequency of 5 GHz with
acel size of 2.5 mm requires 730 unknowns when a uniform
rectangular grid and rooftop basis functions are employed, and
it remains unchanged over the frequency range of interest. The
antenna has the first resonant frequency at 2.25 GHz, while the
second oneoccursat 4 GHz. The proposed interpol ation scheme
is implemented from 1 to 5 GHz, and two different frequency
step sizes are used for this case. For thefirst case, the frequency
stepsize A f = 2 GHzisemployed, and thematricesaredirectly
computed and stored at 1, 3, and 5 GHz. For the second case,
we use a frequency step of 1 GHz so that the entire frequency
band is divided into two sub-bands, viz. 1-3 and 3-5 GHz. The
impedance matricesat 1, 2, and 3 GHz are precalcul ated directly
for the first sub-band, while matrices at 3, 4, and 5 GHz are
precalculated directly for the second sub-band. The impedance
matrix and current coefficients obtained from the proposed in-
terpolation scheme are compared to those of direct computa-
tion at every 0.1 GHz including the first resonant frequency at
2.25 GHz, with the error norm for the impedance matrix defined
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shown in Fig. 7. The S11 characteristics and input impedance
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Fig. 11. Geometry of a4 x 4 planar square patch array.

responses for the two cases are compared in Figs. 8 and 9, while
Fig. 10 comparestheradiation patternsat 2.25 GHz. We observe
that the error norm for the second case, which uses afrequency
stepsizeof 1 GHz, ismuch lower than that for the casewherethe
frequency step sizewas 2 GHz. At this point, we need to discuss
how to choose an optimum interpolation frequency step size[6].
Since we usethe effective wavenumber and wavel ength, the cor-
responding wavenumber step sizeis Ak, = 2r /.. Werequire
the interpolation step size to introduce a phase change of less
than 7r; hence, Ak pmyn < 7. Let usassumethat the largest dis-
tance between the source and testing functions as p,,,,x. From
this, we can derive the maximum interpolation step size to be
Afar = fr/2(pmax/Ae), Where fyr is the upper limit of the
frequency band. It turns out that a frequency step size of less
than A fys isagood guideline for achieving a close agreement
with the results of direct computation. For this example, the
largest distance p,.x IS approximately 2.5, at the highest fre-
quency and A f, isapproximately 1 GHz. Aswe observe from
Figs. 7-10, the interpolation result with a frequency step size
of 1 GHz shows good agreement when compared to the direct
computation. Thetimefor the direct impedance matrix calcula-
tionis 6.6 s per frequency on aPentium |11 PC with a550-MHz
processor and 1-GB RAM, whereasiit is 0.42 s using the inter-
polation scheme on the same machine.

B. 4 x 4 Sguare Patch Array

The second example considered is a 4 x 4 planar square
patch array with a length of 28.3 mm and a center-to-center
separation between the elements of 49.7 mm, as shown in
Fig. 11. The individual patches are fed by a strip probe of
1-mm radius and is offset aong the y-axis by 5 mm. The
substratethicknessis2.1844 mmanditse,. = 2.33. The number
of unknowns for this problem is 2096, when it is modeled
by using the rooftop basis functions. The array has its first
resonant frequency at 3.32 GHz, and the interpolation scheme
isimplemented from 2.5 to 3.5 GHz. The frequency step size of
Af = 0.5 GHz is used, and the impedance matrices at 2.5, 3,
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Fig. 12. Comparison of the S-parameters for the 4 x 4 square patch array.

and 3.5 GHz are used for the interpolation. For thisexample, the
largest distance p.,..x between the source and testing functions
is approximately 4X. at the highest frequency and A fy; is
approximately 0.45 GHz, which is close to the frequency step
size used, for this example. The magnitude of S-parameters are
plotted in Fig. 12, and these are computed at every 0.05 GHz
including the resonant frequency of 3.32 GHz. The results show
good agreement compared to the direct computation result.
The direct impedance matrix filling time for each frequency
is 43.09 s on a Pentium |1l PC with 550-MHz processor and
1-GB RAM, while it is9.42 s per frequency when the proposed
interpolation technique is used.

IV. CONCLUSIONS

Inthispaper, we have presented anew interpolation technique
for MoM matrices associated with planar microstrip structures.
Wehaveidentified threedifferent regions, viz. near, intermediate,
and far, on the basis of the distance between the source and
testing functions, and have presented different interpolating
schemes tailored for each region. The matrix interpolation
scheme is extendable to a general class of problems that are
currently under investigation by the authors.
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